Comparative phylogenomic analysis provides insights into TCP gene functions in Sorghum

نویسندگان

  • Aleena Francis
  • Namrata Dhaka
  • Mohit Bakshi
  • Ki-Hong Jung
  • Manoj K. Sharma
  • Rita Sharma
چکیده

Sorghum is a highly efficient C4 crop with potential to mitigate challenges associated with food, feed and fuel. TCP proteins are of particular interest for crop improvement programs due to their well-demonstrated roles in crop domestication and shaping plant architecture thereby, affecting agronomic traits. We identified 20 TCP genes from Sorghum. Except SbTCP8, all are either intronless or contain introns in the untranslated regions. Comparative phylogenetic analysis of Arabidopsis, rice, Brachypodium and Sorghum TCP proteins revealed two distinct classes categorized into ten sub-clades. Sub-clade F is dicot-specific, whereas A2, G1 and I1 groups only contained genes from grasses. Sub-clade B was missing in Sorghum, whereas group A1 was missing in rice indicating species-specific divergence of TCP proteins. TCP proteins of Sorghum are enriched in disorder promoting residues with class I containing higher percent disorder than class II proteins. Seven pairs of paralogous TCP genes were identified from Sorghum, five of which seem to predate Rice-Sorghum divergence. All of them have diverged in their expression. Based on the expression and orthology analysis, five Sorghum genes have been shortlisted for further investigation for their roles in regulating plant morphology. Whereas, three genes have been identified as candidates for engineering abiotic stress tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum: Comparative phylogenomic analysis provides insights into TCP gene functions in Sorghum

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the mater...

متن کامل

Phylogenomic inference of protein molecular function: advances and challenges

MOTIVATION Protein families evolve a multiplicity of functions through gene duplication, speciation and other processes. As a number of studies have shown, standard methods of protein function prediction produce systematic errors on these data. Phylogenomic analysis--combining phylogenetic tree construction, integration of experimental data and differentiation of orthologs and paralogs--has bee...

متن کامل

Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population.

Correspondence among QTLs affecting height and/or flowering was investigated across the five races of sorghum, an interspecific sorghum F2 population, and 32 previously published sorghum, maize, rice, wheat, and barley populations revealing 185 QTLs or discrete mutants. Among nine QTLs mapped in the interspecific sorghum population (six affecting height and three affecting flowering), at least ...

متن کامل

Comparative Genomic Analysis of the Genus Nocardiopsis Provides New Insights into Its Genetic Mechanisms of Environmental Adaptability

The genus Nocardiopsis, a widespread group in phylum Actinobacteria, has received much attention owing to its ecological versatility, pathogenicity, and ability to produce a rich array of bioactive metabolites. Its high environmental adaptability might be attributable to its genome dynamics, which can be estimated through comparative genomic analysis targeting microorganisms with close phylogen...

متن کامل

GreenPhylDB: a database for plant comparative genomics

GreenPhylDB (http://greenphyl.cirad.fr) is a comprehensive platform designed to facilitate comparative functional genomics in Oryza sativa and Arabidopsis thaliana genomes. The main functions of GreenPhylDB are to assign O. sativa and A. thaliana sequences to gene families using a semi-automatic clustering procedure and to create 'orthologous' groups using a phylogenomic approach. To date, Gree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016